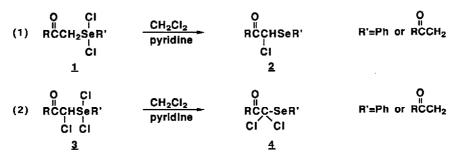

Tetrahedron Letters, Vol. 30, No. 20, pp 2665-2668, 1989 Printed in Great Britain

PUMMERER-LIKE REACTION OF SELENIUM(IV)-DICHLORIDES. SYNTHESIS OF a-CHLORO-a-PHENYLSELENENYLKETONES AND a, a-DICHLORO-a-PHENYLSELENENYLKETONES

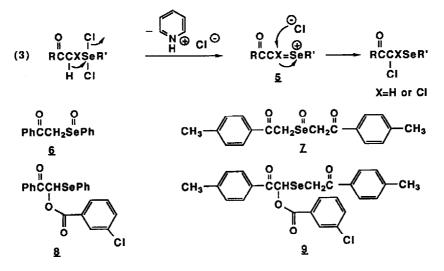

Lars Engman,\* Joachim Persson and Ulf Tilstam Department of Organic Chemistry, Royal Institute of Technology S-100 44 Stockholm, Sweden

Selenium(IV)-dichlorides <u>1</u>, readily available by treatment of methyl ketones with phenylselenium trichloride or selenium tetrachloride, were treated in methylene chloride with pyridine to give  $\alpha$ -chloroselenides <u>2</u> in a Pummerer-like reaction. Sulfuryl chloride chlorination of these materials and repeated pyridine treatment similarly afforded  $\alpha, \alpha$ -dichloroselenides <u>4</u>.

Selenium(IV)-dihalides have recently attracted attention as versatile intermediates in organic synthesis. Their ready hydrolysis to give selenoxides forms the basis for a new mild variation of the selenoxide elimination reaction, applicable to the preparation of enones, 1, 2 allylic and vinylic chlorides<sup>3,4</sup> and esters<sup>5</sup> (Scheme 1, path a). The old finding<sup>6</sup> that alkyl aryl selenium dichlorides decompose upon heating to give alkyl halides and the respective aryl-selenenyl halides has recently been applied to the synthesis of alkyl halides from selenides,<sup>7</sup> selenoxides,<sup>8</sup> alcohols,<sup>9</sup>  $\beta$ -haloselenides,<sup>4,10</sup>  $\beta$ -methoxyselenides<sup>11</sup> and  $\alpha$ -formylselenides<sup>12</sup> (Scheme 1, path b). Paulmier and coworkers<sup>12</sup> recently observed the formation of  $\alpha$ -chloro- $\alpha$ -phenylselenenylaldehydes from the Se,Se-dichlorides of certain 2-phenylselenenylaldehydes (although the products were never isolated in pure form) (Scheme 1, path C; R=CHO).



We report here Pummerer-like reactions of selenium(IV)-dichlorides  $\underline{1}$  and  $\underline{3}$ , leading, in high yields, to isolable  $\alpha$ -chloro- $\alpha$ -phenylselenenylketones  $\underline{2}$  (eq. 1; R' = Ph) and  $\alpha, \alpha$ -dichloro-- $\alpha$ -phenylselenenylketones  $\underline{4}$  (eq. 2; R'=Ph), respectively. The transformations were also applicable to bis-(acylmethyl)selenium dichlorides  $\underline{1}$  and  $\underline{3}$  as shown (eq. 1 - 2; R'=RCCH<sub>2</sub>). A typical procedure involved treatment of the selenium(IV)-dichloride at ambient temperature in methylene chloride with an excess of pyridine (5 equivalents) for 1 h, followed by acidic (10% HCl aq.) workup and chromatographic purification of the product. The selenium(IV)-dichlorides  $\underline{3}$ required were obtained in a separate step by treatment of selenides  $\underline{2}$  in chloroform with a




stoichiometric amount of sulfuryl chloride in chloroform.

The isolated yields of products  $\underline{2}$  and  $\underline{4}$  and selenium(IV)-dichloride intermediates  $\underline{3}$  are shown in Table 1. The reactions of compounds  $\underline{31}$ - $\underline{30}$  afforded only the <u>gem</u>-dichlorides  $\underline{41}$ - $\underline{40}$ . Repeated chlorination/pyridine treatment of these materials in order to obtain the corresponding  $\alpha, \alpha, \alpha'$ -trichloro and  $\alpha, \alpha, \alpha', \alpha'$ -tetrachloro selenides turned out to be difficult. Attempts to extend the reactions shown in equations 1 and 2 to other selenium(IV)-dichlorides than those derived from methyl ketones also resulted in complex product mixtures.

The selenium(IV)-dichloride starting materials <u>1</u> are all readily available. Compounds <u>1a-1k</u> were obtained by treatment of phenylselenium trichloride, PhSeCl<sub>3</sub>, with a slight excess of the corresponding methyl ketone in dry ether or in acetic acid.<sup>1</sup> Compounds <u>1c</u>, <u>1d</u>, <u>1g</u> and <u>1k</u>, not previously prepared, were isolated in 71, 78, 96 and 61% yields, respectively. The high selectivity for methyl substitution observed with methyl isobutyl ketone (compound <u>1k</u>) was usually not seen with other sterically less hindered unsymmetric dialkyl ketones.<sup>1</sup> Bis-(acylmethyl)selenium dichlorides are available by treatment of ketones with SeOCl<sub>2</sub><sup>13</sup> or SeO<sub>2</sub>/HCl.<sup>14</sup> We find the old synthesis using selenium tetrachloride<sup>15</sup> very convenient for large-scale preparation of compounds <u>11-10</u>.

The mechanism of the reactions shown in eq. 1-2 seems to be related to the well-known seleno-Pummerer reaction.<sup>16</sup> After proton abstraction and loss of pyridinium hydrochloride as shown in eq. 3, the resulting selenonium chloride 5 could rearrange to product via nucleophilic



| selenium(IV)-<br>dichloride <u>1</u>                                                                                                    | product<br>2                                                                                                                                                                                                                    | yield<br>(%)               | product <u>3</u><br>yield (%)                                                                 | product<br>4                                                                                                                                                                                                         | yield<br>(%)                 |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| O CI<br>ArCCH <sub>2</sub> SePh                                                                                                         | O<br>H<br>ArCCHSePh<br>CI                                                                                                                                                                                                       |                            |                                                                                               | O<br>H<br>ArCCSePh<br>CÍ CI                                                                                                                                                                                          |                              |
| $\begin{array}{c} 1 & ar=C_6H_5 \\ b & Ar=4-Me-C_6H_4 \\ c & Ar=4-MeO-C_6H_4 \\ d & Ar=4-CI-C_5H_4 \\ e & Ar=4-NO_2-C_6H_4 \end{array}$ | 2 a Ar=C <sub>6</sub> H <sub>3</sub><br>b Ar=4-Me-C <sub>6</sub> H <sub>4</sub><br>c Ar=4-MeO-C <sub>6</sub> H <sub>4</sub><br>d Ar=4-CI-C <sub>6</sub> H <sub>4</sub><br>e Ar=4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> | 93<br>89<br>82<br>89<br>84 | <u>38(95)</u><br><u>3b(</u> 87)<br><u>3c(</u> 97)<br><u>3d(</u> 64)<br><u>3e</u> <sup>a</sup> | $\begin{array}{ccc} \underline{4} & a & Ar = C_6H_3 \\ b & Ar = 4 \cdot Me \cdot C_6H_4 \\ c & Ar = 4 \cdot Me 0 \cdot C_6H_4 \\ d & Ar = 4 \cdot Cl \cdot C_6H_4 \\ e & Ar = 4 \cdot NO_2 \cdot C_6H_4 \end{array}$ | 67<br>78<br>74<br>82<br>33 b |
| CCH <sub>2</sub> SePh<br>cl<br>lí                                                                                                       |                                                                                                                                                                                                                                 | 79                         | <u>3f(</u> 88)                                                                                | CI<br>S<br>S<br>CI<br>S<br>S<br>CI<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S                                                                                                                       | 97                           |
| O<br>CCH₂SePh<br>cl<br>1g                                                                                                               |                                                                                                                                                                                                                                 | 86                         | <u>3a</u> (88)                                                                                | С<br>Ссзерн<br>сі`сі<br>49                                                                                                                                                                                           | 77                           |
| CH <sub>2</sub> SePh<br>CH <sub>2</sub> SePh<br>CI                                                                                      | CHSePh<br>Cl<br>2h                                                                                                                                                                                                              | 92                         | <u>3h(</u> 85)                                                                                | Ci Ci<br>4h                                                                                                                                                                                                          | 64                           |
| O CI<br>I<br>R └ CH₂SePh                                                                                                                | O<br>R <sup>→</sup> ÇHSePh                                                                                                                                                                                                      |                            |                                                                                               | O<br>R ↓ SePh                                                                                                                                                                                                        | ı                            |
| ĊI<br>1 í R=CH₃<br>j R=t-C₄H9<br>k R=i-C₄H9                                                                                             | CI<br>2 í R≃CH3<br>j R=t-C4H9<br>k R=i-C4H9                                                                                                                                                                                     | 89<br>90<br>87             | 3i(83)<br>3j <sup>a</sup><br>3k(46)                                                           | CI CI<br><u>4</u> i R=CH₃<br>j R=t-C₄H₂<br>k R=i-C₄H₂                                                                                                                                                                | 83<br>57 b<br>84             |
| O CI O<br>ArCCH2SeCH2CAr<br>ci                                                                                                          | O O<br>ArCCHSeCH₂CAr<br>Cl                                                                                                                                                                                                      |                            |                                                                                               | o o<br>ArCCSeCH₂CAr<br>cí Cl                                                                                                                                                                                         |                              |
| <u>1</u> I Ar=C6H5<br>m Ar=4-Me-C6H₄<br>n Ar=4-CI-C6H4                                                                                  | 2 I Ar=C6H5<br>m Ar=4-Me-C6H4<br>n Ar=4-CI-C6H4                                                                                                                                                                                 | 82<br>73<br>84             | <u>31(</u> 99)<br>3m <sup>a</sup><br>3n(97)                                                   | $\begin{array}{ccc} 4 & I & Ar=C_6H_5 \\ m & Ar=4-Me-C_6H_4 \\ n & Ar=4-CI-C_6H_4 \end{array}$                                                                                                                       | 72<br>76 <sup>b</sup><br>84  |
|                                                                                                                                         | → CHSeCH <sub>2</sub> C ←                                                                                                                                                                                                       | 70                         | <u>30(</u> 83)                                                                                |                                                                                                                                                                                                                      | 71                           |
| 10                                                                                                                                      | 20                                                                                                                                                                                                                              |                            |                                                                                               | <u>4a</u>                                                                                                                                                                                                            |                              |

## TABLE 1 Preparation of α-Chloro-α-phenylselenenylketones, α,α-Dichloro-α-phenylselenenylketones and Related Compounds from Selenium(IV)-dichlorides.

a yield not determined.

b yield based on the corresponding  $\alpha$ -chloroselenide 2. (the corresponding selenium (IV)-dichloride 3 was prepared in CH<sub>2</sub>Cl<sub>2</sub> without isolation and treated with pyridine).

attack of chloride ion. Since the reactions could be run under anhydrous reaction conditions, 17 a possible selenoxide intermediate (formed from traces of water present) was eliminated from consideration. Attempts to prepare the selenoxides  $\underline{6}$  and  $\underline{7}$  by <u>m</u>-chloroperbenzoic acid oxidation of the corresponding selenides resulted in the formation of  $\alpha$ -acyloxyselenides <u>8</u> and <u>9</u>, respectively. Similar Pummerer-type transformations were previously reported with other selenides carrying acidic protons in the  $\alpha$ -position.<sup>18</sup>

 $\alpha$ -Chloroselenides are available by a variety of methods  $1^{9}$ ,  $2^{0}$  The procedure described in this paper should be a useful addition to them due to its simple operation and ready availability of starting materials. The potential of  $\alpha$ -chloroselenides as reaction intermediates in organic synthesis has so far been very little studied<sup>20,21</sup> and  $\alpha, \alpha$ -dichloroselenides have, to the best of our knowledge, never been previously prepared. Considering the versatility of the related  $\alpha$ -chlorosulfides as synthetic intermediates, 22 much development is awaited in the future. We are presently studying the hydrolysis and oxidative deselenation of compounds  $\underline{2}$  and  $\underline{4}$  as a method of oxidizing methyl ketones in a controlled way to  $\alpha$ -ketoaldehydes or  $\alpha$ -ketoacids.

Acknowledgement: Financial support by the Swedish Natural Science Research Council is gratefully acknowledged.

## **REFERENCES AND NOTES**

- 1. Engman, L. <u>Tetrahedron Lett</u>. 1985, <u>26</u>, 6385.
- Engman, L. J. Org. Chem. 1988, 53, 4031.
   Engman, L. <u>Tetrahedron Lett</u>. 1987, <u>28</u>, 1
   Engman, L. J. Org. Chem. 1987, <u>52</u>, 4086.
- Engman, L. <u>Tetrahedron Lett</u>. 1987, <u>28</u>, 1463.
- Engman, L. J. Org. Chem. 1987, <u>52</u>, 4086.
   Engman, L. J. Org. Chem. 1989 in press.
- Edwards, O.K.; Gaythwaite, W.R.; Kenyon, J.; Phillips, H. J. Chem. Soc. 1928, 2293. Foster, D.G. J. Am. Chem. Soc. 1933, <u>55</u>, 822. Foster, D.G. <u>Rec. Trav. Chim. Pays-Bas</u> 1934, 53, 405. Behaghel, O.; Hofmann, K. Ber. Dtsch. Chem. Ges. 1939, 72, 697.
- 7. Sevrin, M.; Dumont, W.; Hevesi, L.; Krief, A. Tetrahedron Lett. 1976, 2647.
- 8. Hevesi, L.; Sevrin, M.; Krief, A. Tetrahedron Lett. 1976, 2651.
- 9. Sevrin, M.; Krief, A. J.C.S. Chem. Comm. 1980, 656.
- 10. Garratt, D.G.; Schmid, G.H. <u>Can. J. Chem</u>. 1974, <u>52</u>, 3599. Morella, A.M.; Ward, A.D. Tetrahedron Lett. 1984, 25, 1197. Morella, A.M.; Ward, A.D. Tetrahedron Lett. 1985, 26, 2899.
- Tiecco, M.; Testaferri, L.; Tingoli, M.; Chianelli, D.; Bartoli, D. Tetrahedron, 1988, 44, 11. 2261.
- 12. Paulmier, C.; Outurquin, F.; Plaquevent, J.C. <u>Tetrahedron Lett</u>. 1988, <u>46</u>, 5893.
- Nelson, R.E.; Jones, R.N. <u>J. Am. Chem. Soc</u>. 1930, <u>52</u>, 1588.
   Funk, H.; Papenroth, W. <u>J. Prakt. Chem</u>. 1960, <u>283</u>, 191.
- Michaelis, A.; Kunckell, F. Ber. Dtsch. Chem. Ges. 1897, 30, 2823. Kunckell, F.; 15. Zimmermann, R. <u>Ann</u>. 1901, <u>314</u>, 281.
- 16. Hevesi, L. in Patai, S.; Rappoport, Z., Eds. "The Chemistry of Organic Selenium and Tellurium Compounds Vol. 1" Wiley, New York, 1986, p. 316.
- 17. Methylene chloride was dried over CaCl<sub>2</sub>. Pyridine was distilled from KOH and kept over molecular sieves 4A.
- 18. Galambos, G.; Simonidesz, V. <u>Tetrahedron Lett</u>. 1982, <u>23</u>, 4371. See also Okamoto, Y.; Chellappa, K.L.; Homsany, R. J. Org. Chem. 1973, <u>38</u>, 3172.
- Schöllkopf, U.; Küppers, H. <u>Tetrahedron Lett</u>. 1963, 105. Petragnani, N.; Rodrigues, R.; Comasseto, J.V. <u>J. Organomet. Chem</u>. 1976, <u>114</u>, 281. Comasseto, J.V.; Ferreira, J.T.B.; 19. Brandt, C.A.; Petragnani, N. <u>J. Chem. Res. (S)</u> 1982, 212. Dumont, W.; Sevrin, M.; Krief, A. Angew. Chem. 1977, 89, 561.
- Buckley, D.J.; McKervey, M.A. J.C.S. Perkin Trans. 1, 1985, 2193.
   Dumont, W.; Sevrin, M.; Krief, A. <u>Tetrahedron Lett</u>. 1978, 183.
- 22. Dilworth, B.M.; McKervey, M.A. Tetrahedron 1986, 42, 3731.

(Received in UK 13 March 1989)